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Hugo André Chamusca Pereira
hugo.c.pereira@tecnico.ulisboa.pt
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Abstract: In robotics, the occurrence of singularities typically results in a loss of a degree of freedom. For
spacecrafts employing control moment gyro clusters, singularities may occur due to the alignment of the gimbals,
which inhibits the creation of torque in at least one direction. This translates into a loss of control authority that
has a direct impact on the spacecraft’s attitude control system. In this work, an optimal allocation framework for
singularity avoidance is proposed. The presented solution aims to provide a singularity-robust allocation scheme
that can be used as an add-on to a conventional attitude controller. This algorithm resorts to the model predictive
control framework to predict the future states of the gimbals and, subsequently, take control actions that lead to
singularity-free configurations while minimizing the control energy spent. The use of a redundant actuator makes
it possible to avoid singularities while the system meets the torque references defined by the controller. Moreover,
a novel, computationally efficient and numerically robust, singularity metric is derived to assess the proximity of a
singularity. This function overcomes the complexity of the standard literature solutions, such as the condition num-
ber, and can be integrated as a linear constraint in a convex optimization problem. Finally, the proposed approach
is applied to a two-dimensional control moment gyro cluster in a simulation environment. It is verified that the
system is capable of avoiding all of the internal singularities of the cluster at a relatively low computational expense.

Keywords: control moment gyros; singularities; action governor; model predictive control; convexity.

1. Introduction

1.1. Motivation

Control momentum gyros (CMGs) are angular momen-
tum storage devices that can be used as steering actua-
tors for spacecraft attitude control. A control moment
gyro consists of a spinning rotor, or flywheel, and one
or more motorized gimbals that tilt the rotor’s angu-
lar momentum to create torque on the spacecraft. Most
CMGs contain a single gimbal, which allows the creation
of torque in a plane normal to the gimbal spinning axis.
A spacecraft employing a cluster of single gimbal CMGs
(SGCMGs) requires at least three of these devices for
attitude control. Indeed, there are as many degrees of
freedom as gimbals. Yet, spacecrafts typically employ at
least one extra CMG for redundancy.

While gimbaling a flywheel, there is the chance of wit-
nessing alignments in the system. When these situations
happen, the spacecraft is not able to produce torque
in certain directions. These configurations are known
as singularities and are related to the kinematics of a
robotic arm that encounters motion limits on the end-
effector due to joint alignments [1]. Also denoted by
gimbal-lock, these special configurations happen when
the spacecraft is holding the maximum amount of angu-
lar momentum in one direction - in this case, referred to
as saturation singularities, or when the spacecraft loses
controllability due to an anti-parallel alignment in the

system. Singularities constitute an issue of major con-
cern as they have a direct impact on the spacecraft’s
actuation capability, and therefore can affect the space-
craft’s orientation during a manoeuvre. Depending on
their magnitude, singularities can be considered criti-
cal for missions requiring high-pointing capabilities, and
therefore, should be avoided.

1.2. Objectives

The goal of this letter is to provide an attitude control
framework for singularity avoidance. This can be ac-
complished by first understanding the different types of
singularities of a specific CMG cluster, concluding about
their influence on the spacecraft’s motion, and finding a
way of minimizing their effect.

1.3. Literature review

Several allocation algorithms have been studied to de-
termine the inputs to the gimbals, i.e., the gimbal rates.
The pseudoinverse steering law, known as the Moore-
Penrose pseudoinverse, is one of the simplest and most
frequent steering laws. This minimal two-norm approach
receives the torques from the controller and computes
the gimbal rates using the right pseudoinverse method.
Obviously, this method does not contemplate the prox-
imity of a singularity. Among the existing solutions that
acknowledge the existence of singularities, one can dis-
tinguish singularity escape algorithms from singularity
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avoidance algorithms. Some approaches have both ca-
pabilities, as depicted in Fig. 1 [1].

Fig. 1: Types of CMG allocation algorithms.

Singularity escape algorithms aim to overcome singu-
larities through small torque deviations from the com-
mand torque. The purpose of these algorithms is to keep
the conditioning of the actuator’s Jacobian as small as
possible. To achieve this, an inexact mapping, from the
command torque to the gimbal rates, through a pseudo-
inverse method is employed. Although these techniques
have been proven effective to escape from singularities,
these methods are likely impractical when attitude track-
ing accuracy is of primary importance. In these cases,
where torque matching is strictly necessary, other alter-
natives that do not explore the use of torque error are
often preferred.

Some types of singularities, i.e. internal singularities,
offer the possibility of avoidance without the introduc-
tion of a torque error. Singularity avoidance algorithms
make use of null motion to avoid such singularities. This
is possible due to the use of a redundant CMG, that
allows for infinite different CMG configurations for ev-
ery command torque. Nevertheless, some singularities,
namely external singularities, cannot be avoided through
the use of null motion. In these cases a torque error
is acceptable to escape the singularity effect. Many al-
gorithms that comprise both singularity avoidance and
escape capabilities have been recently studied.

Optimal control approaches are commonly employed
for singularity avoidance and escape. A research done by
H. Leeghim et al. [2] computes the optimal gimbal rates
via a one-step-ahead strategy. This method uses a math-
ematical model of the system to predict the state of the
gimbals one-step further in time. Receding horizon (RH)
control was extensively studied by K. Takada and H. Ko-
jima in [3]. This work tackles the low manoeuvring time
associated with trajectories that pass through or near
singularities, and are therefore critical for agile missions.
A model predictive controller is described in [4] to com-
pute the gimbal rates that minimize the torque error
over the prediction horizon. This strategy computes the
gimbal rates in an integrated fashion, merging both the
controller and control allocation steps into a single op-
timization problem. A nonlinear model predictive con-
troller for attitude tracking of constant references with
consideration of singularities was proposed in [5]. This
approach, however, exhibits a very complex formulation,
leading to very high computational times. In [6] and [7]
heurisitic search algorithms have been derived for gim-
bal path planning. In the first, rapidly-exploring random
trees are considered in tandem with a classical steering
law to manoeuvre the spacecraft along a path that min-
imizes the occurrence of singularities. In the second, a
global search algorithm, that determines the null mo-

tion added upon the singularity robust inverse steering
law, was derived. Machine learning (ML) approaches
are also becoming popular in spacecraft attitude con-
trol. A work published by C. Papakonstantinous et al. [8]
employed ML techniques for singularity avoidance with
some promising results.

Leading-edge research has mostly focused on the de-
velopment of steering laws for both singularity avoid-
ance and escape. Optimal control strategies are capa-
ble of both and allow for constraint handling, which is
paramount for achieving optimal performance while ac-
counting for the physical limitations of the actuators.
Nonetheless, optimal control algorithms are usually com-
putationally heavy and inefficient. The formulations can
sometimes be complex and highly nonlinear, leading to
non-convex optimization problems. Given this, the so-
lution proposed in this letter aims to fill the gap that
separates high performance and low computational ef-
fort. An end-to-end controller that directly computes
gimbal rate commands given the attitude error does not
generally cope with these requirements. Therefore, there
is a strong commitment throughout this work to find a
decoupled and complementary strategy to a known stan-
dard controller.

1.4. Contributions

The main contributions of this letter are as follows:

• A closed-form description of the singularity envelope
is accomplished. For some CMG clusters, the sin-
gularities are organized in lines in the gimbal space.
This information is leveraged for singularity avoid-
ance by assessing the Euclidean distance between
the gimbals and the closest singularity in the enve-
lope. According to the best of the author’s knowl-
edge, this is the first time that the distance to the
singularities is exploited for singularity avoidance.

• A novel algorithm for CMG allocation is derived. It
consists of an add-on allocation technique to a liter-
ature controller, that receives the torques computed
by the controller, and outputs a sequence of gimbal
rates that lead to singularity-free gimbal configura-
tions. This solution resorts to the model predictive
control framework and employs a singularity term
that considers the Euclidean distance to the clos-
est singularity, resulting in a convex optimization
problem.

1.5. Notation

Throughout this letter, math symbols and letters are
represented in italic. Scalar variables and constants are
represented in either small or capital letters, vectors are
represented in small boldface letters, and matrices are
represented in capital boldface letters. In particular, In
denotes the n × n identity matrix, and diag(a1, ..., aN )
denotes the diagonal matrix whose diagonal entries are
given by a1, ..., aN . The i-th element of the vector v
is denoted by vi, and the entry (i, j) of a matrix M is
denoted by Mij .

For a square symmetric matrix P , P ≻ 0 and
P ⪰ 0 are used to indicate that P is positive-definite
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and positive-semidefinite, respectively. The operators
∥·∥2 and ∥·∥∞ are used to indicate the 2-norm and the
∞-norm of a vector, respectively, and the operator ∥·∥S
is equivalent to ∥·∥S =

√
(·)TS(·).

2. Background

2.1. Control moment gyro

A CMG creates gyroscopic torque by gimbaling a fly-
wheel that is generally spinning at a constant speed.
Accordingly, the output torque of a CMG, t, is given
by

t =
dh

dt
= h× γ̇, (1)

where h denotes the CMG angular mometum and γ̇ rep-
resents the gimbal spinning rate [9]. Fig. 2 illustrates the
schematics of a CMG.

Fig. 2: Control moment gyro (Adapted from [10]).

2.2. Action Governor

Consider a system represented by the discrete-time
model

x(k + 1) = fd(x(k),u(k)), (2)

where x(k) ∈ Rm represents the system state at the
discrete-time instant k, with k ∈ R+

0 , and u(k) ∈ Rn rep-
resents the control input. It is assumed that the nominal
control policy

uϕ(k) = ϕ(x(k), r(k), k) (3)

has been defined for the system (2), where r ∈ Rp repre-
sents the reference signal. The control policy ϕ may be
linear, nonlinear, time-invariant, or time-variant. Fur-
thermore, consider that the system state x(k) is subject
to an exclusion zone requirement of the form

x(k) /∈ X0, , ∀k ∈ Z+
0 , (4)

where the set of all feasible x is denoted by X . The nom-
inal control policy does not necessarily contemplate the
exclusion zone requirement (4). Therefore, there may be
situations where the system state lies in X0, which may
lead to undesired consequences. The goal of the algo-
rithm proposed in [11] aims to enforce (4) by monitoring
and minimally modifying the nominal input uϕ when
necessary. This is realized through an add-on supervi-
sory scheme, referred to as Action Governor, as depicted
in Fig. 3.

The AG consists of an online constrained optimization
problem of the form

minimize
u(k) ∈ U

∥u(k)− uϕ(k)∥2S (5a)

subject to fd(x(k),u(k)) ∈ X\X0, (5b)

Fig. 3: Action governor scheme.

where U represents the range of control inputs, S is a
positive-definite matrix, and (5a) is used to penalize the
difference between the nominal control command uϕ and
the modified control command u that satisfies (5b) [11].

2.3. Model Predictive Control

Model predictive control (MPC) is an advanced control
method typically used to control a system while satisfy-
ing a set of constraints. MPC uses a mathematical model
to predict the future behaviour of the system and take
control actions accordingly. These control actions, that
drive the system to the setpoints, result from solving a
constrained optimization problem (see Fig. 4). The in-
puts to the MPC are a sequence of setpoints over a finite
duration time-window.

Fig. 4: MPC block.

The operating principle of a MPC is described as fol-
lows:

• The outputs for a given prediction horizon Np, at
the time instant k, are predicted sequentially using
a dynamic model of the system. The predicted out-
puts depend on the state of the system and the com-
puted control signals up to the time instant k − 1.

• The sequence of future control actions is determined
by optimizing a cost function under specific con-
straints. The cost function usually comprises a term
that penalizes deviations from the setpoint over the
prediction horizon and a term to regularize the con-
trol effort. The constraints of the optimization
problem include the model equations that dictate
the next state of the system given its current state
and the input. These may also include saturation
functions, input rate limiters, or even state restric-
tions. Usually, state constraints can be relaxed by
being penalized in the cost function instead.

• The first control action in the control sequence u
is applied to the system while the remaining control
signals are discarded. On the next sampling instant,
the control sequence is re-computed for a different
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state x. The control horizon, Nc, dictates the num-
ber of optimized control actions. If the control hori-
zon is smaller than the prediction horizon, the last
computed input is kept constant for the remaining
length of the horizon [12].

3. Model definition

3.1. Actuator dynamics

A CMG cluster consisting of three control moment gy-
ros is considered throughout this document. As shown in
Fig. 5, the cluster is arranged in a way such that every
CMG sits on a vertex of an equilateral triangle. This
is a simple model, not commonly used in real space-
crafts as it only provides roll and pitch control. How-
ever, it contains a convenient singularity envelope that
will be further explored to demonstrate the potential of
the proposed approach. To compensate for yaw control
and achieve full 3-dimensional controllability, a reaction
wheel is later added to the z-direction.
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γ̇2
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ḣ3CMG
#1

CMG
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Fig. 5: Triangular cluster of CMGs.

Designating the momentum of the i-th CMG by hi,
the angular momentum of the entire system is given by
the sum of the angular momentum produced by each
CMG, i.e.

h = h1 + h2 + h3, (6)

which results in

h = h0

(
sin (α+ γ1)
cos (α+ γ1)

)
+ h0

(
− cos γ2

sin γ2
)

+ h0

(
sin (α− γ3)

− cos (α− γ3)
)

∈ R2,

(7)

where h0 ∈ R is momentum magnitude of each CMG,
α = 30◦, and γ ∈ R3 is the gimbal angle vector. The
time derivative of the angular momentum can be deter-
mined by applying the chain rule to (7), yielding

ḣ(γ) =
∂h

∂γ

∂γ

∂t
= J(γ)γ̇, (8)

where J ∈ R2×3 represents the Jacobian given by

J(γ) = h0

(
cos (α+ γ1)
− sin (α+ γ1)

sin γ2

cos γ2
− cos (α− γ3)
− sin (α− γ3)

)
.

(9)

3.2. Satellite dynamics

Control moment gyros exploit the principle of conserva-
tion of angular momentum to steer the spacecraft. The
motion of a satellite equipped with an arbitrary system
of CMGs can be expressed by

ḣs + ω × hs = τ , (10)

where hs ∈ R3 denotes the angular momentum respec-
tive to the satellite motion, ω is the satellite angular ve-
locity, and τ ∈ R3 denotes the external torques applied
on the spacecraft. The satellite’s angular momentum is
defined as

hs = Isω + h, (11)

where Is ∈ R3×3 designates the matrix of inertia of the
spacecraft, and h ∈ R3 represents the angular momen-
tum produced by the CMG system. Since spacecrafts
can be regarded as rigid bodies, the time derivative of
hs with respect to the body axis simplifies to

dhs

dt
= İsω︸︷︷︸

=0

+Isω̇ + ḣ = Isω̇ + ḣ. (12)

Substituting (12) and (11) in (10), yields

Isω̇ + ḣ+ ω × (Isω + h) = τ . (13)

Finally, solving (13) with respect to the satellite’s angu-
lar acceleration, one obtains

ω̇ = I−1
s (−ω̇ × Isω̇ − ḣ− ω × h+ τ ). (14)

3.3. Satellite kinematics

The kinematics of the satellite can be described using
unit quaternions. In aerospace applications, it is com-
mon to use a special quaternion for attitude representa-
tion, denoted by q̄, whose derivative is given by

q̇ =
1

2
Ω(ω)q, (15)

where

Ω(ω) =


ω3

ω2

ω1

0

ω2

−ω3

0
−ω1

−ω1

0
ω3

−ω2

0
ω1

−ω2

−ω3

 . (16)

The scalar component of the quaternion is designated by
q0, and its vectorial part is designated by q.

4. Singularity analysis

In robotics, a singularity is defined as a configuration
where at least one degree of freedom is lost. Since the
output of the CMG system represents torques, it be-
comes impossible to produce torque in a given direction
under the presence of a singularity. Mathematically, this
is evaluated by the rank of the Jacobian. Therefore,
there is a singularity whenever

rank(J(γ)) < min(m,n), (17)

giving that J(γ) ∈ Rm×n. For non-square matrices
where m < n, this is equivalent to verifying when the
determinant of JJT equals zero, i.e.,

det(JJT ) = 0. (18)
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4.1. Singularities in the triangular cluster of CMGs

The rank of the Jacobian, for the triangular CMG sys-
tem, is equal to two in non-singular circumstances. This
is the maximum rank it can take, as this matrix has
two rows and three columns. When the system meets
a singularity, the Jacobian becomes rank deficient. In
this scenario, the rank of the Jacobian drops to one,
making it impossible to create torque in 2-dimensions.
Since CMGs comprise flywheels that are permanently at
a constant speed, it is impossible to witness rank-0 sin-
gularities in SGCMG systems. The singularities of the
triangular CMG system can be classified in 3h or 1h, de-
pending on the orientation of the gimbals. Also known
by saturation singularities, 3h singularities occur when
the system is exerting the maximum amount of torque
in a single direction. On the other hand, 1h singularities
happen when the direction of flywheels is the same, just
like in the 3h singularities, but one CMG is spinning in
the opposite direction of the other two. An example of
a 3h singularity is provided in Fig. 6.

x
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h3
γ̇1

γ̇2

γ̇3

ḣ1

ḣ2

ḣ3

CMG
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CMG
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Fig. 6: Example of a 3h singularity.

To determine the whole singularity envelope, one has
to solve (18). Since the expression for the determinant is
quite complex to solve analytically, it is easier to break
down the determinant of JJT into the sum of the de-
terminants of its submatrices. Indeed, according to the
Cauchy-Binet theorem [13], the determinant of JJT is
equivalent to

det(JJT ) =

n∑
i=1

d2i , (19)

where di = det(Ji) are the Jacobian minors of order m
and Ji = J with the i-th column removed. The com-
putation of each determinant, for the triangular CMG
system, is straightforward, yielding

d21 =
h40
2

cos (2γ2 − 2γ3 + 2α) +
h40
2
, (20a)

d22 =
h40
2

cos (2γ3 − 2γ1 + 2α) +
h40
2
, (20b)

d23 =
h40
2

cos (2γ1 − 2γ2 + 2α) +
h40
2
. (20c)

To verify (18), every determinant di has to be zero. This
results in the singularity lines defined by

γ1 = γ3 −
π

3
+ kβπ, kβ ∈ Z, (21a)

and
γ2 = γ3 +

π

3
+ kγπ, kγ ∈ Z, (21b)

where γ3 ∈ R. Some of these singularity lines represent
1h singularities, while others represent 3h singularities.
The plot shown in Fig. 7 depicts the different singulari-
ties for the gimbal space where

γi ∈ [−π, π] rad, ∀i ∈ {1, 2, 3}. (22)

Fig. 7: Singularities envelope.

4.2. Torque envelopes

The torque envelopes for both a singular and a non-
singular gimbal configurations are analysed next via the
singular value decomposition (SVD) of the Jacobian.

For the non-singular gimbal configuration γ =
(0, 0, 0)T , represented in Fig. 5, the Jacobian takes the
form

J(γ) = h0

(
0.8660
−0.5000

0
1.000

−0.8660
−0.5000

)
, (23)

being full rank, i.e., rank(J(γ)) = 2. In fact, the SVD
of the Jacobian suggests that both singular values are
non-zero and even share the same value, i.e. σ1 = σ2 =
1.225h0. Since both singular values are non-null, there
are no singular directions in (23), meaning that for this
gimbal configuration, torque is available in any direction.

For the singular gimbal configuration shown in Fig. 6,
where γs = (0, 2π/3,−2π/3)T , the Jacobian is given by

J(γs) = h0

(
0.8660
−0.5000

0.8660
−0.5000

0.8660
−0.5000

)
, (24)

having two linearly dependent rows. In this case, the
rank of the Jacobian equals one, and its SVD contains
a null singular value. The singular direction, that has
magnitude zero, is given by u = (−0.8660,−0.5000)T .
Regardless of the magnitude of the gimbal inputs, the
torque produced by the system will be zero along the
singular direction u. Indeed, if one defines a gimbal in-
put envelope in R3, where

γ̇i ∈ [−1.5, 1.5] rad/s, ∀i ∈ {1, 2, 3}, (25)

and map it to torques via (8), it becomes possible to visu-
alize the torque envelopes for both non-singular and sin-
gular gimbal configurations. These plots are presented
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in Figs. 8 and 9, respectively, and suggest that torques
are possible in every 2D direction for the non-singular
gimbal configuration, whereas torques are only feasible
along the non-singular direction for the singular gimbal
configuration.

Fig. 8: Torque envelope for the non-singular configura-
tion.

Fig. 9: Torque envelope for the singular configuration.

4.3. Vicinity of a singularity

In the previous section, it became clear that when the
system crosses a singularity, torque is lost in at least one
direction regardless the input given to the gimbals. For
real actuators, this is even more problematic as the gim-
bal rates are physically limited. In fact, as the system
approaches a singularity, the inputs to the gimbals be-
come larger in order to cope with the torque required
by the controller. The system can only match the com-
manded torque until the point where it is not further
possible to create torque by increasing the speed of the
gimbals. This situation typically happens in the vicinity
of a singularity and should be avoided as torque match-
ing can no longer be verified. Therefore, the problem of
avoiding singularities becomes more complex, since now
there is the need to avoid not only the singularity, but
also to prevent the system from entering its neighbor-
hood.

5. Controller design and control allocation

5.1. Singularity metrics

To design a controller for singularity avoidance, the sys-
tem has to be able to sense the proximity of a singularity.
This information is paramount as it allows the system to
take control actions that lead to singularity-free gimbal
states. As mentioned in Section 4.3, when the system

enters the vicinity of a singularity, the gimbal inputs
become larger in an effort to meet the desired torque.
Indeed, the 2-norm and the ∞-norm of the gimbal rate
vector can be useful metrics to analyse the closeness of
a singular state, as their value increases whenever the
system approaches a singularity. However, singularities
can be hard to discern in situations where the gimbal
inputs are large due to the nature of the control torques.
Indeed, if the torques are not properly regulated, they
might convert into large gimbal rates that can be mis-
taken for singularities. Yet, limiting the control torques
beyond the physical limitations of the actuators is not
usually desired, as by doing so, the actuation capabil-
ity of the satellite decreases. For these reasons, different
metrics to evaluate the proximity of a singularity, in an
explicit form, have been studied. The manipulability in-
dex, defined as

m =
√
det(JJT ), (26)

and the condition number, defined as

c =
σmax

σmin
, (27)

where σmax and σmin represent the largest and small-
est singular values of the Jacobian, respectively, are the
most standard metrics to evaluate the proximity of a sin-
gularity. When the system approaches a singularity, m
tends to zero, and c tends to infinity as σmin tends to
zero. Even though intuitive, these approaches are com-
putationally expensive as they require an online compu-
tation of the determinant or the singular values of JJT .

In this letter, a novel, numerically robust and efficient,
singularity metric is derived. Start by examining the
singularities in a 2-dimensional space. Designating the
minimum required distance to a given singularity by κ,
one can define a circular exclusion zone centered at the
singularity γs with radius κ, as depicted in Fig. 10. The

Fig. 10: Exclusion requirement for the 2D case.

exclusion requirement is verified whenever the gimbals,
γ, satisfy

(γ − γp)
T︸ ︷︷ ︸

vT
1

(γs − γp)︸ ︷︷ ︸
v2

≤ 0, (28)

where γp denotes the projection of the gimbal vector on
the exclusion zone boundary, and is calculated by

γp = γs + κ
γ − γs

∥γ − γs∥2
. (29)

These results are applicable to n-dimensions and can be
leveraged for singularity avoidance in many different sys-
tems. Before applying (28) and (29), one has to know, at
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any given time, the closest singularity in the system. As
the singularities are arranged in 3D lines for the triangu-
lar CMG cluster (see Fig. 7), the closest point in a singu-
larity line consists of the orthogonal projection of γ on
the line. Therefore, the closest singularity in the system
is achieved by finding the minimum distance between the
gimbals and all of the lines contained in the singularity
envelope. This can be leveraged to reduce the memory
space used to store the location of the singularities, by
storing only the information about the equations that
describe the singularity lines. Besides this, the number
of equations can be minimized by wrapping the gimbal
angles to the interval [−π, π]. In this way, only the infor-
mation regarding the singularity lines contained in the
interval [−π, π] has to be stored. This makes this met-
ric a lightweight and efficient solution that will be later
exploited for singularity avoidance.

5.2. Action governor

Consider a nominal control policy that computes the re-
quired torque, ḣc, for a given attitude manoeuvre. Due
to the redundancy of the system, the solution to

ḣc = Jγ̇, (30)

is the set

S = {γ̇ ∈ Rn : γ̇ = γ̇0 +Nλ}, (31)

where γ̇0 ∈ Rn is the optimal energy solution, N ∈
Rn×(m−rank(J)) is the normalized nullspace, and λ ∈
Rm−rank(J) is the scaling vector. Assuming that the gim-
bal rates are physically constrained to the interval

D = {γ̇i ∈ R : |γ̇i| ≤ γ̇max, ∀i = 1, ..., N}, (32)

where γ̇max denotes the maximum gimbal rate, the set
of feasible solutions to (30) is given by

U = S ∩ D. (33)

The optimal energy solution, γ̇0, is obtained using the
Moore-Penrose pseudoinverse, i.e.

γ̇0 = JT (JJT )−1ḣc. (34)

Furthermore, to respect the physical limitations in (32),
the optimal gimbal rates undergo a saturation function
S, given by

S(γ̇0) =

γ̇0 , if ∥γ̇0∥∞ < γ̇max,

γ̇max
γ̇0

∥γ̇0∥∞
, if ∥γ̇0∥∞ ≥ γ̇max.

(35)

The optimal energy solution is usually sought as it allows
to meet a control torque using the least control energy
possible. However, there are situations where this solu-
tion may drive the system into a singularity. Therefore,
an action governor is derived to monitor and modify, if
necessary, the optimal gimbal rates in order to keep the
system away from the singularities. Denoting the set of
all d ∈ R+

0 by X , a singularity influence region, X0, that
the system ought to avoid, can be defined as

X0 = {d ∈ R+
0 : d < κ}, (36)

where d represents the distance to the closest singularity,
and κ ∈ R+

0 represents the distance threshold. Knowing
this, the action governor can be formulated as an online
constrained optimization problem of the form

minimize
γ̇(k) ∈ U

∥γ̇(k)− γ̇0(k)∥2S (37a)

subject to γ(k + 1) = γ(k) + Tsγ̇(k), (37b)

γ(k + 1) ∈ X\X0, (37c)

where U is the set of redundant solutions, Ts is the sam-
pling time, S ≻ 0, and (37a) is employed to penalize the
difference between the nominal gimbal rate command
γ̇0(k) and the modified gimbal rates γ̇(k) that satisfy
(37c). For feasibility reasons, (37c) can be relaxed by
being handled as a soft constraint in the cost function
rather than a hard constraint. This can be done by using
a penalty function PX0

, such that

PX0
(γ) =

{
0 , if γ ∈ X\X0,

> 0 , if γ ∈ X0.
(38)

Singularity avoidance is promoted by keeping the gimbal
angles prediction, given by (37b), outside of the plane p
(see Fig. 10). Consequently, the exclusion requirement
is verified if

(γ(k + 1)− γp(k))
T (γs(k)− γp(k)) ≤ 0, (39)

meaning that the boundary plane p, computed at the
time instant k, is used for singularity avoidance at the
time instant k+1. This allows for a reduction in the num-
ber of operations performed for singularity avoidance.
In fact, the gimbal projection γp is obtained through a
nonlinear expression. Therefore, to achieve linearity, this
one cannot be updated inside the optimization problem.
Using the penalty function PX0(η) = max(η(k + 1), 0)2,
where

η(k + 1) = (γ(k + 1)− γp(k))
T (γs(k)− γp(k)), (40)

it becomes possible to penalize any gimbal motion to-
wards the inner side of the plane p.

5.3. MPC-based allocation

The previous approach relies on the numerical integra-
tion of the gimbal rates to obtain a one-step-ahead pre-
diction of the gimbal angles. With this information, the
system takes control actions that aim to avoid singular-
ities while meeting the command torque. This method,
however, is not effective in situations where it is impossi-
ble to avoid a singularity by computing the gimbal rates
a single step ahead in time. Besides this, the solutions
provided by this approach are commonly jerky, as the
system is required to act immediately. Indeed, in some
situations, the system has to be able to sense the prox-
imity of the singularity far ahead in time in order to
avoid it. This also allows for a reduction in the control
energy used for dodging the singularity. Therefore, a
new approach, that resorts to the model predictive con-
trol framework, is derived to overcome these limitations.
This approach tackles the allocation problem by extend-
ing the prediction of the gimbal angles over a fixed pre-
diction window. This provides the ability to anticipate
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the proximity of a singularity region a few steps ahead in
time, and consequently take control actions that lead to
singularity-free configurations. To achieve this, a predic-
tor is firstly derived to estimate the sequence of control
torques, Ḣc, over the prediction window. The predictor
uses the system model

d

dt


h
ω
q
q0
 =


ḣc

I−1
s (−ω̇ × Isω̇ − ḣ− ω × h+ τ )

1
2q0I3ω − 1

2S(ω)q
− 1

2ω
Tq

 .

(41)
It receives a sequence of attitude references R(k) =(
r(k), ..., r(k + Np)

)
, where Np denotes the prediction

horizon, and combines (41) with the nominal controller
to calculate the sequence of control torques, represented
by Ḣc(k) =

(
ḣc(k), ..., ḣc(k+Np)

)
, that are fed to the al-

location MPC. This one aims to minimize the cost func-
tion

L =

k+Np∑
τ=k

(
1

2
∥ḣ(τ)− ḣc(τ)∥2H +

1

2
∥γ̇(τ)∥2U

+
1

2
∥γ̇(τ)− γ̇(τ − 1)∥2M +

1

2
ρmax(η(τ + 1), 0)2

)
(42)

subject to

ḣ(τ) = Jϕγ̇(τ) +Aϕ(γ(τ)− γϕ(τ)), (43a)

γ(τ + 1) = γ(τ) + Tsγ̇(τ), (43b)

|γ̇i(τ)| ≤ γ̇max ,∀i = 1, ..., N, (43c)

|γ̇i(τ)− γ̇i(τ − 1)| ≤ ∆γ̇max ,∀i = 1, ..., N, (43d)

η(τ + 1) = (γ(τ + 1)− γp(k))
T (γs(k)− γp(k)), (43e)

where τ ∈ {k, ..., k+Np}. The optimization weights are

the positive-definite matrices H ∈ Rm×m, U ∈ Rn×n,
M ∈ Rn×n, and the parameter ρ ∈ R+. The torque
computation is linearized, in (43a), about the equilib-
rium (γϕ(τ), γ̇ϕ(τ)) for all τ ∈ {k, ..., k+Np}, where the
linearization matrices, Jϕ and Aϕ, are given by

Jϕ =
∂ḣ

∂γ

∣∣∣∣∣
(γϕ,γ̇ϕ)

, Aϕ =
∂ḣ

∂γ̇

∣∣∣∣∣
(γϕ,γ̇ϕ)

. (44)

The equilibria used for torque linearization along the pre-
diction horizon, at the time instant k, are defined by the
sequence of gimbal states, Γ, and the sequence of gimbal
rates, Γ̇, computed at the time instant k−1. In addition,
the equilibrium corresponding to the last prediction in
the horizon, i.e. (γϕ(k + Np), γ̇ϕ(k + Np)), is obtained
by duplicating the last set of gimbal angles and gimbal
rates in Γ(k − 1) and Γ̇(k − 1), respectively. Note that
the maximum gimbal rate variation, ∆γ̇max, is obtained
by multiplying the maximum gimbal acceleration, γ̈max,
with the sampling time, Ts. Similarly to Section 5.2, the
exclusion plane p is computed for the time instant k, and
kept constant along the horizon.

In short:
• The term 1

2∥ḣ(τ) − ḣc(τ)∥2H is used to penalize
the mismatch between the control torque commands
and the torques produced by the CMG system.

• The term 1
2∥γ̇(τ)∥

2
U is used to minimize the control

energy spent.

• The term 1
2∥γ̇(τ) − γ̇(τ − 1)∥2M is another control

energy metric. Yet, this term is used to penalize
significant variations between consecutive gimbal in-
puts.

• Finally, the term 1
2ρmax(η(τ + 1), 0)2 is used for

singularity avoidance.

Lastly, the optimization problem given by the cost
function (42) and the set of constraints (43) is convex.
This means that any solution is globally optimal and
can be achieved at a very low computational expense.
Indeed, (42) is given by the sum of four distinctive con-
vex functions at every step in the horizon. The first
three are quadratic whose Hessian matrices are positive-
definite, and the last results from the composition of
the affine map (43e) with the squared ReLU function
(f(x) = max(x, 0)2), that is known to be convex. Be-
sides this, the equality constraints (43a) and (43b) are
affine functions of γ̇(τ), and the inequality constraints
(43c) and (43d) result from the composition of an affine
map with the modulus function, that is also known to
be convex.

6. Results

The MPC-based allocation strategy was tested in a small
satellite model, with mass 180 kg, for different horizons
and both with and without the presence of the singular-
ity term in the cost function. The optimization weights
were tuned to achieve optimal performance and the dis-
tance threshold parameter, κ, was set to 0.5 rad. In
the following simulations, the prediction and the control
horizons were set equal. The simulations were carried
out for 90 s with a sampling time of 0.1 s. Lastly, an
attitude reference consisting of constant references was
defined as

(ϕ, θ, ψ) =


(0, 0, 0) [rad] , 0 ≤ t ≤ 30,

(−25, 20, 0) π
180 [rad] , 30 < t ≤ 60,

(0, 0, 0) [rad] , 60 < t ≤ 90.

(45)
The control torques and the actual torques produced by
the system are provided in Figs. 11-13. For a horizon
of one-time step, and without the use of the singularity
term, it is obvious that the system meets a singularity
at t ≈ 30 s. This translates into a significant torque mis-
match. For the same horizon, but using the singularity
term, the torque mismatch is not as large as without the
singularity term. Hence, the effectiveness of the singu-
larity term is confirmed. For a horizon of five-time steps,
i.e. 0.5 s, torque matching is verified.

The gimbal rates are shown in Figs. 14-16. For a hori-
zon of one-time step, and without using the singular-
ity term, the system requires a huge control effort to
overcome the singularity effect. Even though the gim-
bal rates do not saturate, the gimbals accelerations do,
which reflects in a large control energy. When the sin-
gularity term is added to the cost function, an overall
reduction of the control energy is witnessed. Finally, the
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Fig. 11: Control torque vs. actual torque for a horizon
of one-time step without the singularity term.
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Fig. 12: Control torque vs. actual torque for a horizon
of one-time step with the singularity term.
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Fig. 13: Control torque vs. actual torque for a horizon
of five-time steps with the singularity term.

gimbal rates are close to energy-minimal for a horizon of
five-time steps.

The gimbal trajectory for the different horizons, with-
out the use of the singularity term, is shown in Figs. 17
and 18. The plots validate the aforementioned conclu-
sions. By increasing the MPC horizon, the system is
able to predict the system’s state a few steps ahead in
time, and therefore anticipate the presence of a singular-
ity. The closeness of a singularity is explicitly expressed
in the cost function through the singularity term. How-
ever, the torque error term and the control energy terms
also account for the existence of singularities implicitly.
Since torque error is expected under the presence of a
singularity, it is likely that by penalizing the torque er-
ror in the cost function, the system already performs
some kind of singularity avoidance. The same reason-
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Fig. 14: Gimbal rates for a horizon of one-time step with-
out the singularity term.
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Fig. 15: Gimbal rates for a horizon of one-time step with
the singularity term.
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Fig. 16: Gimbal rates for a horizon of five-time steps
with the singularity term.

ing applies to the control energy terms. Moreover, the
hard constraints imposed on the gimbal rates and accel-
erations implicitly constrain the motion of the gimbals
towards the singularities. Nevertheless, the system ben-
efits from the singularity term, as seen before.

7. Conclusions

The long-standing singularity problem, that occurs in
spacecrafts employing control moment gyros clusters,
was addressed in this letter. The effect of a singularity
in the system was carefully analyzed through the SVD of
the Jacobian. It has been shown that for singular gim-
bal configurations, the Jacobian contains at least one
null singular value that inhibits the creation of torque in
the singular direction. This translates into a loss of con-
trollability, that has an impact in the spacecraft’s ACS.
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Fig. 17: Gimbal trajectory for a horizon of one-time step.

Fig. 18: Gimbal trajectory for a horizon of five-time
steps.

To tackle this problem, an optimal allocation frame-
work for singularity avoidance was proposed and vali-
dated in a simulation environment. Besides this, a new
singularity metric was derived to perceive the proximity
of a singularity. Contrary to common literature solu-
tions, which are generally complex and computationally
inefficient, this solution uses a rather simple function
that estimates the Euclidean distance between the gim-
bals and the closest singularity. The advantage is that
it can be integrated as a linear constraint in a convex
optimization problem, resulting in a much lower compu-
tational cost.

Then, an MPC-based algorithm for CMG allocation
was derived. With this approach, the system can pre-
dict the presence of a singularity a few steps ahead in
time and take control actions that lead to singularity-free
gimbal states. One could notice that the behaviour of
the system improved as the prediction horizon increased.
Besides this, the effectiveness of the novel singularity in-
dex was confirmed. Finally, the convergence to an opti-
mal solution is guaranteed as convexity was achieved.

8. Future Work

The main guidelines for future work in this topic are as
follows:

• The allocation algorithms should be validated in the
presence of perturbations. These should include
internal unmodelled perturbations, such as sensor

noise and flexible vibration modes, and external per-
turbations, such as the gravity gradient, solar radi-
ation pressure, and atmospheric drag.

• The proposed singularity index does not apply to
every CMG system. In some cases, the singularity
envelope cannot be described by lines, hence yield-
ing to nonlinear representations that might be costly
to store in an on-board computer. Therefore, con-
vexification techniques to approximate the singular-
ity envelope of a CMG array by a convex set should
also be investigated.
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